Welcome to Fungal Genomics Project

Fungal Species >> Cunninghamella elegans

This is our pre-2005 project. Some links may not function. Please go here for our current project. If you have problems accessing this site, please contact fgarchive@gene.concordia.ca.

Cunninghamella elegans

I. General Description

II. Functional Annotation & Analyses

II. Sequence Homology Search

  • BLAST (Local BLAST search based on sequence similarity)

IV. Downloads & Links

General Species Information


Cunninghamella elegans A. Lendner 1905 [1]

Cunninghamella elegans


Cunninghamella echinulata var.elegans (A. Lendner) J.E. Lunn & W.A. Shipton 1983 [2]
Cunninghamella batistae H.P. Upadhyay & T. Ramos [3]
Cunninghamella bertholletiae O. Stadel 1911 [4]


Cunninghamellaceae, Mucorales, Incertae sedis, Zygomycetes, Zygomycota, Eumycota

According to Kirk et al. (2001) Ainsworth's and Bisby's Dictionary of the Fungi, Ed. 9.


Colonies grow rapidly on MEA agar exceeding 6 cm diameter and 4 cm height after three days growth at room temperature. These colonies first appear white but take on a farinaceous grey appearance as the sporiangioles develop. Vegetatively growing mycelia consist of coenocytic hyphae. The anamorph comprises single-spored, 7-11 µm globulose sporangioles that emerge radially from pyriform columellae. Specialized sporangiophores terminate in large (40 µm) apical columellae and smaller (10-30 µm) lateral columellae. The teleomorph consists of brown globose 25-55 µm zygospores ornamented with flat tuberculate projections [5, 6].


Although C. elegans is a ubiquitous fungus with a world-wide distribution pattern, it favors Mediterranean or sub-tropical climates and prefers to colonize the upper layers of moist soils. The optimal growth temperature for this species is 25°C although some strains can tolerate temperatures as high as 50°C [5]. C. elegans occasionally causes opportunistic zygomycosis in immuno-compromised individuals [7].

Interesting Features

  • C. elegans is able to metabolize a wide variety of xenobiotics using both phase I (oxidative) and phase II (conjugative) biotransformation mechanisms [8]. This species is used extensively as a microbial model for mammalian hepatic metabolism of aromatic xenobiotics [9-18].
  • The cytochrome P-450 enzyme system of C. elegans has been implicated in the neutralization of numerous polycyclic aromatic hydrocarbon (PAH) pollutants [19] including industrial dyes [20], toxic byproducts of diesel fuel combustion [21] and organic pesticides [22].
  • C. elegans can produce chitin in yields equivalent to traditional resources (e.g., mollusk and crustacean carapaces). Chitin is useful in a number of medical and/or pharmaceutical applications [23].

Strain Information


American Type Culture Collection Strain # 36112

Organism: Cunninghamella echinulata var. elegans (Lendner) Lunn & Shipton, teleomorph deposited as Cunninghamella elegans Lendner, teleomorph.
Designations: PA-1  
Isolation: estuarine mud
Depositors: J.J. Perry  


  1. Lendner, A. (1905) Bull. Herb. Boissier, 2 sér. 5, 250.
  2. Lunn, J.E., Shipton, W.A. (1983) Trans. Br. Mycol. Soc. 81(2), 312.
  3. Upadhyay, H.P., Ramos, T.
  4. Stadel, O. (1911) Über neuen Pilz, Cunn. bertholletiae, (Diss., Kiel ), 1-35.
  5. Domsch, K.H., et al. (1980) Compendium of Soil Fungi Academic Press ( London ), 239-241.
  6. Kendrick, B. (1992) The Fifth Kingdom Ed. 2 Mycologue Pub (MA), 25-37.
  7. de Hoog, G. S., et al. (2000) Atlas of Clinical Fungi, 2nd ed, vol. 1. Centraalbureau voor Schimmelcultures, Utrecht , The Netherlands.
  8. Zhang, D. et al. (1996) FEMS Microbiol. Lett. 138(2-3), 221-226.
  9. Parshilkov, I.A. et al. (2004) Appl. Microbiol. Biotechnol. 64, 782-786.
  10. Shanmugam, B. et al. (2003) J. Ind. Microbiol. Biotechnol. 30(5), 308-314.
  11. Zhong, D. et al. (2003) Acta Pharmacol. Sin. 24(5), 442-447.
  12. Moody, J.D. et al. (2000a) Appl. Microbiol. Biotechnol. 53(3), 310-315.
  13. Moody, J.D. et al. (2002) Drug Metab. Dispos. 30(11), 1274-1279.
  14. Abourashed, E.A., Khan, I.A. (2000) Chem. Pharm. Bull. 48(12), 1996-1998.
  15. Pothuluri, J.V. et al. (2000) J. Agric. Food Chem. 48(12), 6138-6148.
  16. Moody, J.D. et al. (2000b) Appl. Environ. Microbiol. 66(8), 3646-3649.
  17. Khalid, A. et al. (2000) Phytochemistry 55, 19-22.
  18. Zhang, D. et al. (1997) Xenobiotica 27(3), 301-315.
  19. Lisowska, K., Dlugonski, J. (2003) J. Steroid Biochem. Mol. Biol. 85, 63-69.
  20. Cha, C. et al. (2001) Appl. Environ. Microbiol. 67(9), 4358-4360.
  21. Pothuluri, J.V. et al. (1998) J. Toxicol. Environ. Health A. 53(2), 153-174.
  22. Pothuluri, J.V. et al. (1997) Arch. Environ. Toxicol. 32, 117-125.
  23. Andrade, V.S. et al. (2000) Can. J. Microbiol. 46, 1042-1045.


Updated: April 06 2005  
Copyright © 2003 - 2005 Fungal Genomics Project, Concordia University