Welcome to Fungal Genomics Project
 

Fungal Species >> Cunninghamella elegans

This is our pre-2005 project. Some links may not function. Please go here for our current project. If you have problems accessing this site, please contact fgarchive@gene.concordia.ca.

Cunninghamella elegans

I. General Description

II. Functional Annotation & Analyses

II. Sequence Homology Search

  • BLAST (Local BLAST search based on sequence similarity)

IV. Downloads & Links


General Species Information

Name

Cunninghamella elegans A. Lendner 1905 [1]

Cunninghamella elegans

Synonyms

Cunninghamella echinulata var.elegans (A. Lendner) J.E. Lunn & W.A. Shipton 1983 [2]
Cunninghamella batistae H.P. Upadhyay & T. Ramos [3]
Cunninghamella bertholletiae O. Stadel 1911 [4]

Taxonomy

Cunninghamellaceae, Mucorales, Incertae sedis, Zygomycetes, Zygomycota, Eumycota

According to Kirk et al. (2001) Ainsworth's and Bisby's Dictionary of the Fungi, Ed. 9.

Description

Colonies grow rapidly on MEA agar exceeding 6 cm diameter and 4 cm height after three days growth at room temperature. These colonies first appear white but take on a farinaceous grey appearance as the sporiangioles develop. Vegetatively growing mycelia consist of coenocytic hyphae. The anamorph comprises single-spored, 7-11 µm globulose sporangioles that emerge radially from pyriform columellae. Specialized sporangiophores terminate in large (40 µm) apical columellae and smaller (10-30 µm) lateral columellae. The teleomorph consists of brown globose 25-55 µm zygospores ornamented with flat tuberculate projections [5, 6].

Ecology

Although C. elegans is a ubiquitous fungus with a world-wide distribution pattern, it favors Mediterranean or sub-tropical climates and prefers to colonize the upper layers of moist soils. The optimal growth temperature for this species is 25°C although some strains can tolerate temperatures as high as 50°C [5]. C. elegans occasionally causes opportunistic zygomycosis in immuno-compromised individuals [7].

Interesting Features

  • C. elegans is able to metabolize a wide variety of xenobiotics using both phase I (oxidative) and phase II (conjugative) biotransformation mechanisms [8]. This species is used extensively as a microbial model for mammalian hepatic metabolism of aromatic xenobiotics [9-18].
  • The cytochrome P-450 enzyme system of C. elegans has been implicated in the neutralization of numerous polycyclic aromatic hydrocarbon (PAH) pollutants [19] including industrial dyes [20], toxic byproducts of diesel fuel combustion [21] and organic pesticides [22].
  • C. elegans can produce chitin in yields equivalent to traditional resources (e.g., mollusk and crustacean carapaces). Chitin is useful in a number of medical and/or pharmaceutical applications [23].

Strain Information

Source

American Type Culture Collection Strain # 36112

Organism: Cunninghamella echinulata var. elegans (Lendner) Lunn & Shipton, teleomorph deposited as Cunninghamella elegans Lendner, teleomorph.
Designations: PA-1  
Isolation: estuarine mud
Depositors: J.J. Perry  

References

  1. Lendner, A. (1905) Bull. Herb. Boissier, 2 sér. 5, 250.
  2. Lunn, J.E., Shipton, W.A. (1983) Trans. Br. Mycol. Soc. 81(2), 312.
  3. Upadhyay, H.P., Ramos, T.
  4. Stadel, O. (1911) Über neuen Pilz, Cunn. bertholletiae, (Diss., Kiel ), 1-35.
  5. Domsch, K.H., et al. (1980) Compendium of Soil Fungi Academic Press ( London ), 239-241.
  6. Kendrick, B. (1992) The Fifth Kingdom Ed. 2 Mycologue Pub (MA), 25-37.
  7. de Hoog, G. S., et al. (2000) Atlas of Clinical Fungi, 2nd ed, vol. 1. Centraalbureau voor Schimmelcultures, Utrecht , The Netherlands.
  8. Zhang, D. et al. (1996) FEMS Microbiol. Lett. 138(2-3), 221-226.
  9. Parshilkov, I.A. et al. (2004) Appl. Microbiol. Biotechnol. 64, 782-786.
  10. Shanmugam, B. et al. (2003) J. Ind. Microbiol. Biotechnol. 30(5), 308-314.
  11. Zhong, D. et al. (2003) Acta Pharmacol. Sin. 24(5), 442-447.
  12. Moody, J.D. et al. (2000a) Appl. Microbiol. Biotechnol. 53(3), 310-315.
  13. Moody, J.D. et al. (2002) Drug Metab. Dispos. 30(11), 1274-1279.
  14. Abourashed, E.A., Khan, I.A. (2000) Chem. Pharm. Bull. 48(12), 1996-1998.
  15. Pothuluri, J.V. et al. (2000) J. Agric. Food Chem. 48(12), 6138-6148.
  16. Moody, J.D. et al. (2000b) Appl. Environ. Microbiol. 66(8), 3646-3649.
  17. Khalid, A. et al. (2000) Phytochemistry 55, 19-22.
  18. Zhang, D. et al. (1997) Xenobiotica 27(3), 301-315.
  19. Lisowska, K., Dlugonski, J. (2003) J. Steroid Biochem. Mol. Biol. 85, 63-69.
  20. Cha, C. et al. (2001) Appl. Environ. Microbiol. 67(9), 4358-4360.
  21. Pothuluri, J.V. et al. (1998) J. Toxicol. Environ. Health A. 53(2), 153-174.
  22. Pothuluri, J.V. et al. (1997) Arch. Environ. Toxicol. 32, 117-125.
  23. Andrade, V.S. et al. (2000) Can. J. Microbiol. 46, 1042-1045.

 

Updated: April 06 2005  
Copyright © 2003 - 2005 Fungal Genomics Project, Concordia University